Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
The set Q consists of the following terms:
is_empty1(nil)
is_empty1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
append2(x0, x1)
ifappend3(x0, x1, nil)
ifappend3(x0, x1, cons2(x2, x3))
Q DP problem:
The TRS P consists of the following rules:
APPEND2(l1, l2) -> IFAPPEND3(l1, l2, l1)
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
The TRS R consists of the following rules:
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
The set Q consists of the following terms:
is_empty1(nil)
is_empty1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
append2(x0, x1)
ifappend3(x0, x1, nil)
ifappend3(x0, x1, cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
APPEND2(l1, l2) -> IFAPPEND3(l1, l2, l1)
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
The TRS R consists of the following rules:
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
The set Q consists of the following terms:
is_empty1(nil)
is_empty1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
append2(x0, x1)
ifappend3(x0, x1, nil)
ifappend3(x0, x1, cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
Used argument filtering: APPEND2(x1, x2) = x1
IFAPPEND3(x1, x2, x3) = x3
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APPEND2(l1, l2) -> IFAPPEND3(l1, l2, l1)
The TRS R consists of the following rules:
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
The set Q consists of the following terms:
is_empty1(nil)
is_empty1(cons2(x0, x1))
hd1(cons2(x0, x1))
tl1(cons2(x0, x1))
append2(x0, x1)
ifappend3(x0, x1, nil)
ifappend3(x0, x1, cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.